A matrix is a rectangular array of real numbers.
Matrix A has 2 horizontal rows and 3 vertical columns.
Each entry can be identified by its position in the matrix.

$$
A=\left[\begin{array}{rrr}
3 & 1 & -2 \\
7 & -1 & 0.5
\end{array}\right]
$$

Order of a Matrix

A matrix with m rows and n columns is of order $m \times n$.
If $m=n$ the matrix is said to be square of order n.

7 is in Row 2 Column 1 -2 is in Row 1 Column 3 A is of order 2×3

Example 1: Find the order of each matrix.

$A=\left[\begin{array}{llll}2 & 3 & 1 & 0 \\ 4 & 2 & 1 & 4 \\ 1 & 1 & 6 & 2\end{array}\right]$
b.

$$
\begin{array}{ll}
\text { ๑. } & B=\left[\begin{array}{lllll}
2 & 5 & 2 & -1 & 0
\end{array}\right] \\
\text { c. } & C=\left[\begin{array}{ll}
3 & 1 \\
6 & 2
\end{array}\right]
\end{array}
$$

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal if they have the same order and $a_{i j}=b_{i j}$ for every i and j.
$\begin{aligned} & \text { For } \\ & \text { example, }\end{aligned} \quad\left[\begin{array}{cc}0.5 & \sqrt{9} \\ \frac{1}{4} & 7\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 3 \\ 0.25 & 7\end{array}\right] \begin{aligned} & \text { both matrices are of order } 2 \times 2 \text { and all } \\ & \text { corresponding entries are equal. }\end{aligned}$

Example 2: Find the sums $A+B$ and $B+C$.
To $\boldsymbol{A D D}$ matrices:

$$
A=\left[\begin{array}{ll}
1 & 5 \\
2 & 1 \\
0 & 6
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 0 & 6 \\
-1 & 0 & -3
\end{array}\right] \quad C=\left[\begin{array}{ccc}
3 & -3 & 0 \\
3 & 2 & 4
\end{array}\right]
$$

1. Check to see if the matrices have the same order.
2. Add corresponding entries.

Example 3: Find the differences $A-B$ and $B-C$.

$$
A=\left[\begin{array}{ll}
3 & 7 \\
2 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & -1 \\
4 & -5
\end{array}\right] \quad C=\left[\begin{array}{ccc}
-1 & 5 & 1 \\
2 & 1 & 6
\end{array}\right]
$$

To SUBTRACT matrices:

1. Check to see if the matrices have the same order.
2. Subtract corresponding entries.

Scalar Multiplication

If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and c is a scalar (a real number), then the $m \times n$ matrix $c A=\left[c a_{i j}\right]$ is the scalar multiple of A by c.
Example 4: Calculate the value of $3 A-2 B+C$ with $\quad A=\left[\begin{array}{rr}2 & -1 \\ 3 & 5 \\ 4 & -2\end{array}\right] \quad B=\left[\begin{array}{rr}5 & 2 \\ 1 & 0 \\ 3 & -1\end{array}\right]$ and $C=\left[\begin{array}{rr}5 & 2 \\ 1 & 0 \\ 3 & -1\end{array}\right]$

Example 5: Using the Distributive Property
A) $2\left(\left[\begin{array}{cc}1 & 3 \\ -2 & 2\end{array}\right]+\left[\begin{array}{ll}-4 & 0 \\ -3 & 1\end{array}\right]\right)=$
В) $4\left(\left[\begin{array}{ccc}-4 & 0 & 1 \\ 0 & 2 & 3\end{array}\right]-\left[\begin{array}{ccc}2 & 1 & -2 \\ 3 & -6 & 0\end{array}\right]\right)=$

Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be $m \times n$ matrices and let \boldsymbol{c} and \boldsymbol{d} be scalars.

1. $A+B=B+A$
2. $A+(B+C)=(A+B)+C$
3. $(c d) A=c(d A)$
4. $1 A=A$
5. $c(A+B)=c A+c B$
6. $(c+d) A=c A+d A$

Commutative Property of Matrix Addition Associative Property of Matrix Addition
Associative Property of Scalar Multiplication
Scalar Identity Property
Distributive Property
Distributive Property

Homework: page 579 \#9-14 and pages 594-595 \#7-23 odd

