Precalculus Notes

A *matrix* is a rectangular array of real numbers.

Matrix A has 2 horizontal rows and 3 vertical columns.

Each entry can be identified by its position in the matrix.

Order of a Matrix

A matrix with *m* rows and *n* columns is of order $m \ge n$. If m = n the matrix is said to be square of order *n*.

$$A = \begin{bmatrix} 3 & 1 & -2 \\ 7 & -1 & 0.5 \end{bmatrix}$$

7 is in Row 2 Column 1 -2 is in Row 1 Column 3 A is of order 2 x 3

Example 1: Find the order of each matrix.

a.					þ.
	$\left\lceil 2\right\rceil$	3	1	0^{-}	$B = \begin{bmatrix} 2 & 5 & 2 & -1 & 0 \end{bmatrix}$
A =	4	2	1	4	[3 1]
	1	1	6	2	C. $C = \begin{bmatrix} 5 & 1 \\ \epsilon & 2 \end{bmatrix}$
	_				

An way a motivity can be unitten	1 - [a] -	$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$a_{12} \\ a_{22}$	•••	$\begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix}$	
An <i>m</i> x <i>n</i> matrix can be written	$A - [u_{ij}] -$: a _{m2}	•. 	\vdots a_{mn}	

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are **equal** if they have the same order and $a_{ij} = b_{ij}$ for every *i* and *j*.

For example,

$$\begin{bmatrix} 0.5 & \sqrt{9} \\ \frac{1}{4} & 7 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 3 \\ 0.25 & 7 \end{bmatrix}$$

both matrices are of order 2 x 2 and all corresponding entries are equal.

Example 2: Find the sums A + B and B + C.

$$\mathbf{A} = \begin{bmatrix} 1 & 5 \\ 2 & 1 \\ 0 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 0 & -3 \end{bmatrix} \quad C = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 2 & 4 \end{bmatrix}$$

To ADD matrices:

- 1. Check to see if the matrices have the same order.
- 2. Add corresponding entries.

$$A = \begin{bmatrix} 3 & 7 \\ 2 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 2 & -1 \\ 4 & -5 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 5 & 1 \\ 2 & 1 & 6 \end{bmatrix}$$

To SUBTRACT matrices:

- 1. Check to see if the matrices have the same order.
- 2. Subtract corresponding entries.

Scalar Multiplication

If $A = [a_{ij}]$ is an $m \times n$ matrix and c is a scalar (a real number), then the $m \times n$ matrix $cA = [ca_{ij}]$ is the **scalar multiple** of A by c.

Example 4: Calculate the value of 3A - 2B + C with $A = \begin{bmatrix} 2 & -1 \\ 3 & 5 \\ 4 & -2 \end{bmatrix} B = \begin{bmatrix} 5 & 2 \\ 1 & 0 \\ 3 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 5 & 2 \\ 1 & 0 \\ 3 & -1 \end{bmatrix}$

Example 5: Using the Distributive Property

A) $2\left(\begin{bmatrix}1 & 3\\-2 & 2\end{bmatrix} + \begin{bmatrix}-4 & 0\\-3 & 1\end{bmatrix}\right) =$ B) $4\left(\begin{bmatrix}-4 & 0 & 1\\0 & 2 & 3\end{bmatrix} - \begin{bmatrix}2 & 1 & -2\\3 & -6 & 0\end{bmatrix}\right) =$

Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be m x n matrices and let c and d be scalars.

1. $A + B = B + A$	Commutative Property of Matrix Addition
2. $A + (B + C) = (A + B) + C$	Associative Property of Matrix Addition
3. $(cd)A = c(dA)$	Associative Property of Scalar Multiplication
4. 1 <i>A</i> = <i>A</i>	Scalar Identity Property
5. $c(A + B) = cA + cB$	Distributive Property
6. $(c + d)A = cA + dA$	Distributive Property

Homework: page 579 #9-14 and pages 594-595 #7-23 odd