Precalculus Notes

An augmented matrix and a coefficient matrix are associated with systems of linear equations.

For the system

$$
\left\{\begin{array}{cc}
2 x+3 y-z & =12 \\
x-8 y & =16
\end{array}\right.
$$

The augmented matrix is

$$
\left[\begin{array}{rrrrr}
2 & 3 & -1 & \vdots & 12 \\
1 & -8 & 0 & & 16
\end{array}\right]
$$

The coefficient matrix is

$$
\left[\begin{array}{rrr}
2 & 3 & -1 \\
1 & -8 & 0
\end{array}\right]
$$

Elementary Row Operations

1. Interchange any two rows of a matrix.
2. Multiply one row of a matrix by a nonzero constant.
3. Add a multiple of one row of a matrix another.

Example 1: Apply the elementary row operation to the augmented matrix of the system.
A) Row Operation

System
$\left\{\begin{array}{l}x+2 y=8 \\ 3 x-y=10\end{array}\right.$
B) Row Operation
$3 R_{2}$

System

$$
\left\{\begin{array}{c}
x+2 y=8 \\
3 x-y=10
\end{array}\right.
$$

C) Row Operation
$-3 R_{1}+R_{2}$

System

$$
\left\{\begin{array}{l}
x+2 y=8 \\
3 x-y=10
\end{array}\right.
$$

A matrix in Row-Echelon form has the following properties.

1. Any rows consisting entirely of zeros is at the bottom of the matrix.
2. The first nonzero entry is 1 for each row that does not entirely contain zeros.
3. For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading one in the lower row.

A matrix is in Reduced Row-Echelon form if every column that has a leading 1 has zeros in every position above and below its leading 1.

Example 2: Determine whether each matrix is in row-echelon form. If it is, determine whether it is in reduced row-echelon form. If it is not, then explain why it is not.
a. $\left[\begin{array}{cccc}1 & 0 & -2 & 4 \\ 0 & 1 & 11 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{cccc}1 & 3 & 4 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 6 & -1\end{array}\right]$
c. $\left[\begin{array}{cccc}1 & 2 & -1 & 8 \\ 0 & 3 & 1 & -4 \\ 0 & 0 & 1 & 3\end{array}\right]$
d. $\left[\begin{array}{ccccc}1 & 2 & -5 & 3 & 9 \\ 0 & 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
e. $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0\end{array}\right]$
f. $\left[\begin{array}{cccc}0 & 1 & 4 & 0 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0\end{array}\right]$

Example 3: Write the system of equations represented by the augmented matrix. Then use back substitution to solve.

$$
\left[\begin{array}{ccc:c}
1 & 2 & -2 & \vdots \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & \vdots \\
0 & -3
\end{array}\right]
$$

Gaussian Elimination with Back Substitution

1. Write the augmented matrix of the system of equations.
2. Use elementary row operations to rewrite the augmented matrix in row-echelon form.
3. Write the system of equations that corresponds to the row-echelon form matrix, and use back substitution to solve.

Example 4a: Use Gaussian Elimination with back substitution to solve the system.

$$
\left\{\begin{array}{c}
2 x+6 y=16 \\
2 x+3 y=7
\end{array}\right.
$$

Example 4b:

$$
\left\{\begin{aligned}
3 x-2 y+z & =15 \\
-x+y+2 z & =-10 \\
x-y-4 z & =14
\end{aligned}\right.
$$

If you obtain a row with all zeros except the last entry, then the system has no solution. It is also called inconsistent.

Example 5: The system corresponding to the following matrix is inconsistent. It has no solution.

$$
\left[\begin{array}{ccccc}
1 & 2 & -5 & 3 & 9 \\
0 & 0 & 1 & 4 & -1 \\
0 & 0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

