Half-Angle Formulas

$$\sin\frac{u}{2} = \pm \sqrt{\frac{1 - \cos u}{2}} \qquad \qquad \cos\frac{u}{2} = \pm \sqrt{\frac{1 + \cos u}{2}} \qquad \qquad \tan\frac{u}{2} = \frac{1 - \cos u}{\sin u} = \frac{\sin u}{1 + \cos u}$$

The sign (\pm) depends on the quadrant that $\frac{u}{2}$ lies.

Example 1: Determine whether the positive or negative square root should be selected.

a.
$$\sin 195^\circ = \pm \sqrt{\frac{1 - \cos 390^\circ}{2}}$$
 b. $\cos(-10^\circ) = \pm \sqrt{\frac{1 + \cos(-20^\circ)}{2}}$

Example 2: Find the exact value of the following:

a. sin 195°

b. cos 105°

Example 3: Find all solutions in the interval $[0, 2\pi)$.

$$\cos^2 x = \sin^2 \frac{x}{2}$$

Example 4: Find $\cos \frac{\theta}{2}$, given $\cos \theta = \frac{1}{4}$ and $\frac{3\pi}{2} \le \theta \le 2\pi$

Example 5: Ignoring air resistance, the range of a projectile fired at an angle θ with the horizontal and with an initial velocity of v_0 feet per second is given by $r = \frac{1}{16} v_0^2 \sin \theta \cos \theta$, where r is the horizontal distance (in feet) that the projectile will travel. A place kicker for the Stevenson Titan's football team can kick a football from ground level with an initial velocity of 78 feet per second. At what angle must the player kick the football so that it travels 188 feet?