Half-Angle Formulas

$$
\sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos \mathbf{u}}{2}} \quad \cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos \mathbf{u}}{2}} \quad \tan \frac{u}{2}=\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u}
$$

The sign (\pm) depends on the quadrant that $\frac{u}{2}$ lies.

Example 1: Determine whether the positive or negative square root should be selected.
a. $\sin 195^{\circ}= \pm \sqrt{\frac{1-\cos 390^{\circ}}{2}}$
b. $\cos \left(-10^{\circ}\right)= \pm \sqrt{\frac{1+\cos \left(-20^{\circ}\right)}{2}}$

Example 2: Find the exact value of the following:
a. $\sin 195^{\circ}$
b. $\cos 105^{\circ}$
c. $\tan \frac{\pi}{6}$

Example 4: Find $\cos \frac{\theta}{2}$, given $\cos \theta=\frac{1}{4}$ and $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$

Example 5: Ignoring air resistance, the range of a projectile fired at an angle θ with the horizontal and with an initial velocity of v_{0} feet per second is given by $\boldsymbol{r}=\frac{1}{16} \boldsymbol{v}_{\boldsymbol{o}}{ }^{2} \boldsymbol{\operatorname { s i n }} \theta \boldsymbol{\operatorname { c o s }} \theta$, where r is the horizontal distance (in feet) that the projectile will travel. A place kicker for the Stevenson Titan's football team can kick a football from ground level with an initial velocity of 78 feet per second. At what angle must the player kick the football so that it travels 188 feet?

