Precalculus Notes

Fundamental Trigonometric Identities

Cofunction Identities	$\sin \theta = \cos(\frac{\pi}{2} - \theta)$ $\tan \theta = \cot(\frac{\pi}{2} - \theta)$ $\sec \theta = \csc(\frac{\pi}{2} - \theta)$	$\cos \theta = \sin(\frac{\pi}{2} - \theta)$ $\cot \theta = \tan(\frac{\pi}{2} - \theta)$ $\csc \theta = \sec(\frac{\pi}{2} - \theta)$
Reciprocal Identities	$\sin \theta = \frac{1}{\csc \theta}$	$\csc \theta = \frac{1}{\sin \theta}$
	$\cos\theta = \frac{1}{\sec\theta}$	$\sec \theta = \frac{1}{\cos \theta}$
	$\tan \theta = \frac{1}{\cot \theta}$	$\cot \theta = \frac{1}{\tan \theta}$
Quotient Identities	$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta$	$=\frac{\cos\theta}{\sin\theta}$
Pythagorean Identities		
$\sin^2\theta + \cos^2\theta = 1$	$1 + \tan^2 \theta = \sec^2 \theta$	$1 + \cot^2 \theta = \csc^2 \theta$
Even/Odd Identities		
$\sin(\theta) = \sin(\theta)$	$cos(\theta) = cos(\theta)$	$tan(\theta) = tan(\theta)$

$\sin\left(-\theta\right) = -\sin\left(\theta\right)$	$\cos(-\theta) = \cos(\theta)$	$\tan\left(-\theta\right) = -\tan\left(\theta\right)$
$\csc(-\theta) = -\csc(\theta)$	$\sec(-\theta) = \sec(\theta)$	$\cot(-\theta) = -\cot(\theta)$

Sine, cosecant, tangent and cotangent are odd functions. Cosine and secant are even functions.

Example 1: Use identities to find the exact value of the remaining trigonometric functions, if possible.

a.
$$\sin x = \frac{1}{2}$$
 and $\cos x > 0$
b. $\csc \vartheta = -5$ and $\cos x < 0$

We are now going to use identities to simplify trigonometric expressions.

<u>Tip:</u> Write trig functions in terms of sine and/or cosine before simplifying, when possible.

Example 2: Simplify $\csc \theta \tan \theta$ **Example 3**: Simplify $\csc t - \cos t \cot t$

Example 4: Simplify $\frac{1-\sin^2 x}{\cot x}$

<u>Try This!</u> Simplify each of the following.

A) cot x sec x

B) $\sec x (\cos x - \cos^3 x)$