Review: In a-d, express as a single logarithm.
a. $2 \log _{x} 4-3 \log _{x} y$
b. $4 \log _{k} w+2 \log _{k} 9$
c. $7 \log _{5} t+3 \log _{5} k-2 \log _{5} g$
d. $\frac{4 \log _{3} k}{3}$
e. The formula for earthquake magnitude is $M=\log \frac{x}{0.001}$ where x is the seismographic reading of the earth quake in mm . Express the formula in expanded form.

Example 1: Write each logarithm in terms of $\ln 2$ and $\ln 5$.
a. $\ln 10=$
b. $\ln \frac{25}{2}=$

Example 2: Use the properties of logarithms to rewrite and simplify the logarithmic expression.
a. $\log _{2} 8=$
b. $\ln \left(5 e^{6}\right)=$

Example 3: Find the exact value of each expression without using a calculator.
a. $\log _{3} 9=$
b. $\log _{7} \sqrt[5]{7}=$
c. $\ln e^{12}+\ln e^{5}=$

Example 4: Expand each Logarithmic Expression.
a. $\log 3 x^{2} y=$
b. $\ln \frac{\sqrt{4 x+1}}{8}=$
c. $\log _{2} x y z^{3}=$

Example 5: Condense each Logarithmic Expression.
a. $\frac{1}{3} \log x+5 \log (x-3)$
b. $4 \ln (x-4)-2 \ln x$
c. $\frac{1}{5}\left[\log _{3} x+\log _{3}(x+1)\right]$

Example 6: A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The table below gives the radius $r$ and the area $A$ of the outer ripple in feet. Find an equation that expresses $A$ as a function of $r$.

| $r$ | 0.6 | 1.2 | 1.8 | 2.4 | 3.0 | 3.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{A}$ | 1.131 | 4.524 | 10.179 | 18.096 | 28.274 | 40.715 |

Step 1: Rewrite the table by taking the natural log of each number.

| In $\boldsymbol{r}$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In $A$ |  |  |  |  |  |  |

Step 2: Find the slope
Remember $m$ is slope so in this case,
$m=\frac{\ln y_{2}-\ln y_{1}}{\ln x_{2}-\ln x_{1}}$

Step 3: Write the equation.

$$
\begin{aligned}
\text { Instead of using } \quad y & =m x+b \\
\text { use } \ln y & =m \ln x+b
\end{aligned}
$$

Homework: Page 241 \#29-43 odd, 67-81 odd, 87, 91, 95

