Precalculus

Review: In a – d, express as a single logarithm.

a.
$$2\log_x 4 - 3\log_x y$$

b. $4\log_k w + 2\log_k 9$

c.
$$7\log_5 t + 3\log_5 k - 2\log_5 g$$
 d. $\frac{4\log_3 k}{3}$

e. The formula for earthquake magnitude is $M = \log \frac{x}{0.001}$ where x is the seismographic reading of the earth quake in mm. Express the formula in expanded form.

Example 1: Write each logarithm in terms of In 2 and In 5.

a.
$$\ln 10 =$$
 b. $\ln \frac{25}{2} =$

Example 2: Use the properties of logarithms to rewrite and simplify the logarithmic expression.

a.
$$\log_2 8 =$$
 b. $\ln(5e^6) =$

Example 3: Find the exact value of each expression without using a calculator.

a. $\log_3 9 =$ **b.** $\log_7 \sqrt[5]{7} =$ **c.** $\ln e^{12} + \ln e^5 =$

Example 4: Expand each Logarithmic Expression.

a.
$$\log 3x^2 y =$$
 b. $\ln \frac{\sqrt{4x+1}}{8} =$

c.
$$\log_2 xyz^3 =$$

Example 5: Condense each Logarithmic Expression.

a.
$$\frac{1}{3}\log x + 5\log(x-3)$$

b. $4\ln(x-4) - 2\ln x$
c. $\frac{1}{5}[\log_3 x + \log_3(x+1)]$

Example 6: A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The table below gives the radius *r* and the area *A* of the outer ripple in feet. Find an equation that expresses *A* as a function of *r*.

r	0.6	1.2	1.8	2.4	3.0	3.6
Α	1.131	4.524	10.179	18.096	28.274	40.715

Step 1: Rewrite the table by taking the natural log of each number.

In r			
In A			

Step 3: Write the equation.

Instead of using y = mx + b, use $\ln y = m \ln x + b$

Homework: Page 241 #29-43 odd, 67-81 odd, 87, 91, 95

Step 2: Find the slope

1

Remember m is slope so in this case, $m = \frac{\ln y_2 - \ln y_1}{\ln x_2 - \ln x_1}$