Example 1: A. Graph the polar equation $r=2 \cos \vartheta$
B. Find the zeros and the maximum value of r for the graph of $r=2 \cos \vartheta$..

$\boldsymbol{\vartheta}$	\boldsymbol{r}
0	2
$\pi / 6$	$\sqrt{3}$
$\pi / 3$	1
$\pi / 2$	0
$\frac{2 \pi}{3}$	-1
$5 \pi / 6$	$-\sqrt{3}$
π	-2
$7 \pi / 6$	$-\sqrt{3}$
$3 \pi / 2$	0
$11 \pi / 6$	$\sqrt{3}$
2π	2

Example 2: Find the zeros and the maximum value of r for the graph $r=-3 \sin \vartheta$.

Tests for Symmetry in Polar Coordinates

S.W.R.T.	Test	Example
The Line $\theta=\pi / 2$	Replace \qquad with \qquad then use the sum/difference formulas	
The Polar Axis	Replace \qquad with \qquad then use the even/odd identities.	
The Pole	Replace \qquad with \qquad then simplify.	
Sum and Difference Formulas: $\sin (u \pm v)=\sin u \cos v \pm \cos u \sin v$ $\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v$		

Even/Odd Identities: Sine, cosecant, tangent and cotangent are odd functions. Cosine and secant are even functions.

$$
\begin{array}{lll}
\sin (-\theta)=-\sin (\theta) & \cos (-\theta)=\cos (\theta) & \tan (-\theta)=-\tan (\theta) \\
\csc (-\theta)=-\csc (\theta) & \sec (-\theta)=\sec (\theta) & \cot (-\theta)=-\cot (\theta)
\end{array}
$$

Example 3: Test the following polar equations for each type of symmetry.

a. $r=2 \cos \vartheta$
b. $r=\frac{3}{2+\sin \vartheta}$
c. $r^{2}=25 \sin 2 \vartheta$

