The process of sketching a curve using parametric equations can sometimes be made easier by eliminating the parameter. This allows the same graph to be produced from an equivalent rectangular equation (in x and y).

For example, we can change parametric form with three variables into a two variable equation.
$x=t+2$
$y=t^{2}$

$t=x-2$

$y=(x-2)^{2}$

$y=(x-2)^{2}$
parametric form
solve for t in one equation
substitute into the second equation
rectangular form

Example 1: Sketch the curve given by the equations by first eliminating the parameter.
a. $x=t$ and $y=-2 t,-2 \leq t \leq 2$

b. $x=2 t$ and $y=|t-2|$

C. $x=\frac{1}{\sqrt{t}}$ and $y=2 t^{2}$

Pythagorean Trigonometric Identities

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Example 2: Sketch the curve represented by $x=2 \cos \theta$ and $y=3 \sin \theta, 0 \leq \vartheta \leq 2 \pi$, by eliminating the angle parameter.

Example 3: Find a set of parametric equations to represent the graph of $y=4 x-3$ using the following parameters.
a. $t=x$
b. $t=2-x$

