Example 1: Graph the ellipse using a graphing calculator. Sketch the results below.

$$
\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1
$$

The eccentricity of an ellipse measures how oval the shape is. It is given by the ratio $\boldsymbol{e}=\frac{\boldsymbol{c}}{\boldsymbol{a}}$ where $0<e<1$ for every ellipse. When an ellipse is nearly circular, the ratio of c/a is very small. A more elongated ellipse will have the ratio close to 1 .

Example 2: Identify the conic as a circle or an ellipse. Then find the center, radius, vertices, foci, and eccentricity of the conic (if applicable), and sketch its graph.
a. $x^{2}+y^{2}-4 x+6 y-3=0$

Example 3: Identify the conic as a circle or an ellipse. Then find the center, radius, vertices, foci, and eccentricity of the conic (if applicable), and sketch its graph.

$$
x^{2}+5 y^{2}-8 x-30 y-39=0
$$

