Day 9 Composite of Reflections over Two Parallel Lines

Name:
Date: \qquad Hour \qquad
*Lesson Adapted from Macomb Mathematics Science Technology Center

1. Using a colored pencil, reflect $\triangle A B C$ over the $x=-3$ line and label the points A^{\prime}, B^{\prime}, and C^{\prime} respectively. Draw $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
2. Using a black pencil, reflect $\Delta A^{\prime} B^{\prime} C^{\prime}$ over the $x=2$ line and label the points $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ respectively. Draw $\Delta A " B " C "$.
3. Draw arrows from A to $A "$, from B to $B "$, from C to C " using a different color.
4. What transformation occurred that would map $\triangle A B C$ onto $\Delta A " B " C " ?$ \qquad
5. How far did $\Delta \mathrm{ABC}$ move to become $\Delta \mathrm{A} " \mathrm{~B} " \mathrm{C}$ "? \qquad in what direction? \qquad
6. Write a composite for this situation that maps the first triangle to the last triangle.

7. Using a colored pencil, reflect $\triangle A B C$ over the $x=2$ line and label the points A^{\prime}, B^{\prime}, and C^{\prime} respectively. Draw $\Delta A^{\prime} B^{\prime} C^{\prime}$.
8. Using a black pencil, reflect $\Delta A^{\prime} B^{\prime} C^{\prime}$ over the $x=-3$ line and label the points $A^{\prime \prime}, B^{\prime \prime}$, and $C "$ respectively. Draw $\Delta A " B " C "$.
9. Draw arrows from A to $A "$, from B to $B "$, from C to C " using a different color.
10. What transformation occurred from $\triangle A B C$ to become $\Delta A " B " C " ?$ \qquad
11. How far did $\triangle \mathrm{ABC}$ move to become $\Delta \mathrm{A} " \mathrm{~B} " \mathrm{C} "$? \qquad in what direction? \qquad
12. Write a composite for this situation that maps the first triangle to the last triangle.

13. Using a colored pencil, reflect $\Delta A B C$ over the $x=-7$ line and label the points A^{\prime}, B^{\prime}, and C^{\prime} respectively. Draw $\Delta A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
14. Using a black pencil, reflect $\Delta A^{\prime} B^{\prime} C^{\prime}$ over the $x=-2$ line and label the points $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ respectively. Draw $\Delta A^{\prime \prime} B^{\prime \prime} C$ ".
15. Draw arrows from A to $A "$, from B to $B "$, from C to C " using a different color.
16. What transformation occurred from $\Delta A B C$ to become $\Delta A " B " C " ?$ \qquad
17. How far did $\triangle \mathrm{ABC}$ move to become $\Delta \mathrm{A} " \mathrm{~B} " \mathrm{C} "$? \qquad in what direction? \qquad
18. Write a composite for this situation that maps the first triangle to the last triangle.

19.

Conjecture on any relationship there might be between the distance between the lines and the distance the original triangle moves in relationship to the ending triangle.
20. Graph the line $x=4$. Find a second line of reflection so that the composite of the two reflections will translate $\triangle \mathrm{ABC} 10$ units to the right. Write the composite.

21. Graph the lines $\mathrm{y}=3$ and $\mathrm{y}=-2$.
22. Using a colored pencil, reflect $\triangle \mathrm{ABC}$ over the $y=3$ line and label the points A', B', and C 'respectively.
Draw $\Delta A^{\prime} B^{\prime} C^{\prime}$.
23. Using a black pencil, reflect $\Delta A^{\prime} B^{\prime} C^{\prime}$ over the $y=-2$ line and label the points $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$, and $\mathrm{C}^{\prime \prime}$ respectively. Draw $\triangle A^{\prime \prime} B^{\prime \prime} C$ ".
24. Draw arrows from A to $A^{\prime \prime}$, from B to B ",from C to C " using a different color.
25. What transformation occurred from
$\triangle A B C$ to become
$\Delta A " B " C " ?$ \qquad

26. How far did $\Delta \mathrm{ABC}$ move to become $\Delta \mathrm{A} " \mathrm{~B} " \mathrm{C} "$? \qquad in what direction? \qquad
27. Write a composite for this situation that maps the first triangle to the last triangle.
28. Graph the lines $\mathrm{y}=3$ and $\mathrm{y}=-2$.
29. Using a colored pencil, reflect $\triangle A B C$ over the $y=-2$ line and label the points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime} respectively. Draw $\triangle A^{\prime} B^{\prime} C^{\prime}$.
30. Using a black pencil, reflect $\Delta A^{\prime} B^{\prime} C^{\prime}$ over the $y=3$ line and label the points $A " B " C "$ respectively. Draw $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime}$.
31. Draw arrows from A to $A "$, from B to B ", from C to $\mathrm{C}^{\prime \prime}$ using a different color.
32. What transformation occurred from
$\Delta \mathrm{ABC}$ to become Δ
A"B"C"? \qquad

33. How far did $\Delta \mathrm{ABC}$ move to become $\Delta \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ \qquad in what direction? \qquad
34. Write a composite for this situation that maps the first triangle to the last triangle.
35. What conjectures can you make about the composite of two reflections over two parallel lines?

Part 2\# 11-17 odd (Use graph paper below)

