Unit 3 Linear Equations
Day 9 Absolute Value Inequalities
(PH 3-6)

Name: \qquad
Date: \qquad Hour: \qquad

REVIEW:

Symbol	Meaning	Closed or Open Circle
$<$	Less Than	Open O
$>$	Greater Than	Open O
\leq	Less Than or Equal to	Closed •
\geq	Grater Than or Equal to	Closed •

Example 1: Graph each inequality.

$$
x<4
$$

$$
\begin{array}{lllllllllll}
4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \longrightarrow \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

$$
x \geq-3
$$

Compound Inequalities

WORDS	ALGEBRA	GRAPH
All real numbers greater than 2 AND less than 6	$\begin{gathered} x>2 \text { AND } x<6 \\ 2<x<6 \end{gathered}$	
All real numbers greater than or equal to 2 AND less than or equal to 6	$\begin{gathered} x \geq 2 \text { AND } x \leq 6 \\ 2 \leq x \leq 6 \end{gathered}$	
All real numbers less than 2 OR greater than 6	$x<2$ OR $x>6$	
All real numbers less than or equal to 2 OR greater than or equal to 6	$x \leq 2$ OR $x \geq 6$	$\begin{array}{lllll} 4 & 6 & 1 & & \\ 0 & 2 & 4 & 6 & 8 \end{array}$

Example 2: $\boldsymbol{A} \boldsymbol{N}$ - Solutions will make BOTH inequalities true. All numbers shaded are solutions.

$$
x>-3 \text { and } x \leq 0
$$

$$
x>3 \text { and } x>1
$$

Example 3: $\boldsymbol{D R}$ - Solutions will make EITHER inequality true. All numbers shaded are solutions.

$$
x \leq-2 \text { or } x>1
$$

$$
x \leq-1 \text { or } x>0
$$

Steps to Solve Absolute-Value Inequalities

1. Get ABS alone
2. Choose symbols $\geq,>$ OR $\leq,<$ AND
3. Write 2 cases:

Case 1: Original without ABS symbols
Case 2: Keep, Flip symbol, Change sign
4. Solve each case

Memory Aid:
 $\leq<$ less thAND
 $\geq>$ greatOR

Example 4: Solve each absolute value inequality. Graph the solutions.
a. $|y-5| \leq 2$
b. $|4 x+1|>13$

To maintain quality, a manufacturer sets limits for how much an item can vary from its specifications. You can use an absolute value equation to model a quality-control situation.

Example 5: The ideal diameter of a piston for one type of car engine is 90 mm . The actual diameter can vary from the ideal by at most 2 mm . Find the range of acceptable diameters for the piston.
Actual:
Ideal:
Tolerance:

Tolerance Equation:

$$
\mid \text { Actual }- \text { Ideal } \mid \leq \text { Tolerance }
$$

Range of acceptable values:

