Name: _______ Hour: _____

REVIEW:

Symbol	Meaning	Closed or Open	
_	_	Circle	
<	Less Than	Open 이	
>	Greater Than	Open ㅇ	
≤	Less Than or	Closed 🗣	
	Equal to		
≥	Greater Than or	Closed 🔹	
	Equal to		

Example 1: Graph each inequality.

4 + + + + + + + + + + + + → -5 -4 -3 -2 -1 0 1 2 3 4 5

Х	≥-3		

Smpound mequaintes		51
WORDS	ALGEBRA	GRAPH
All real numbers greater than 2 AND less than 6	x > 2 AND x < 6 2 < x < 6	∢ ⊕ ⊕ > 0 2 4 6 8
All real numbers greater than or equal to 2 AND less than or equal to 6	$x \ge 2 \text{ AND } x \le 6$ $2 \le x \le 6$	< ↓ ↓ > 0 2 4 6 8
All real numbers less than 2 OR greater than 6	x < 2 OR x > 6	
All real numbers less than or equal to 2 OR greater than or equal to 6	$x \le 2 \text{ OR } x \ge 6$	

Example 2: AND - Solutions will make BOTH inequalities true. All numbers shaded are solutions.

$x > -3$ and $x \le 0$	4+ + + + + + + + + + + + + + + + + + +	
x > 3 and $x > 1$	4 + + + + + + + + + + + + + + + + + + +	

Example 3: OR-Solutions will make EITHER inequality true. All numbers shaded are solutions.

- $x \le -2 \text{ or } x > 1$
- $x \le -1 \text{ or } x > 0$

Steps to Solve Absolute-Value Inequalities

 Get ABS alone
Choose symbols ≥,> OR ≤,< AND
Write 2 cases: Case 1: Original without ABS symbols Case 2: Keep, Flip symbol, Change sign
Solve each case

<u>Memory Aid:</u>	\leq < less thAND	\geq > great OR
--------------------	---------------------	--------------------------

Example 4: Solve each absolute value inequality. Graph the solutions.

a. $|y-5| \le 2$ **b**. |4x+1| > 13

To maintain quality, a manufacturer sets limits for how much an item can vary from its specifications. You can use an absolute value equation to model a quality-control situation.

Example 5: The ideal diameter of a piston for one type of car engine is 90 mm. The actual diameter can vary from the ideal by at most 2 mm. Find the range of acceptable diameters for the piston.

Actual:

Ideal:

Tolerance:

Tolerance Equation:

 $Actual - Ideal \leq Tolerance$

Range of acceptable values:

Homework: page 169-171 #23 – 35 odd, 56, and 58, 59, and 84