Unit 3 Linear Equations
Name: \qquad
Day 1 Solve Systems of Equations By Graphing
Date: \qquad Hour: \qquad (PH 7-1)
Two or more linear equations together form a system of linear equations. One way to solve a system of linear equations is by graphing each equation. Any ordered pair in a system that makes all the equations true is a solution of the system of linear equations.

Example 1: Algebraically determine whether the given point is a solution for each pair of equations.
a. $\begin{aligned} & 4 x-y=4 \\ & 3 x-2 y=7\end{aligned} ;(3,8)$ \qquad b. $\begin{aligned} & y=-x+5 \\ & y=x+9\end{aligned} \quad ;(-2,7)$
\qquad

- If the lines intersect, there is one solution. It is a consistent system with independent lines.
- If the lines are parallel, there is no solution. It is an inconsistent system with independent lines.
- If the lines are the same, there are infinite solutions. It is a consistent system with dependent lines.

Example 2: Solve by graphing. State if the system is consistent or inconsistent. Also state if it is dependent or independent. Check your solutions.
a.

$$
y=2 x-3
$$

$$
y+1=x
$$

b. $\quad \begin{aligned} y & =x+5 \\ y & =-4 x\end{aligned}$
c. $\quad y=-\frac{1}{2} x+2$

$$
y=-3 x-3
$$

When two lines are parallel, there are no points of intersection. So a system of linear equations has no solution when the graphs of the equations are pa

Example 3: Solve by graphing.

$$
\begin{aligned}
& y=-2 x+1 \\
& y=-2 x-1
\end{aligned}
$$

A system of linear equations has infinitely many solutions when the graphs of the equations are the same line. The coordinates of the points on the common line are all solutions of the system.

Example 4: Solve by graphing.

$$
\begin{aligned}
& 2 x+4 y=8 \\
& y=-\frac{1}{2} x+2
\end{aligned}
$$

Example 5: Suppose you are testing two fertilizers on bamboo plants A and B which are growing under identical conditions. Plant A is 6 cm tall and growing at a rate of $4 \mathrm{~cm} /$ day. Plant B is 10 cm tall and growing at a rate of $2 \mathrm{~cm} /$ day.

Label plant A and plant B.
After how many days will the bamboo plants be the same height?

What will their height be?

Example 6: You are testing two fertilizers on bamboo plants C and D. Plant C is 5 cm tall and growing at a rate of $2 \mathrm{~cm} /$ day. Plant D is 7 cm tall and growing at a rate of $1 \mathrm{~cm} /$ day.

After how many days will the bamboo plants be the same height?

What will their heights be?

Homework: pg 343 \#1-4 all, 5-13 odd, 15-24 all (skip 18), and additional exercises \#1-4

Unit 3 Linear Equations
Day 1 Homework

Name:
Date: \qquad Hour: \qquad

Show all work on a separate sheet of lined paper.
2. \qquad 3. \qquad 4. \qquad

1. \qquad
2.

13. \qquad

15. \qquad
19. \qquad 20. \qquad
24. \qquad
23. \qquad
\qquad
16.

21. \qquad 22. \qquad
9. \qquad 11. \qquad

17. \qquad

Additional exercises. Graph each system and find the solution from the graph.

1. $y-2 x=1$
$y=3$

$$
2 y-x=4
$$

2. $y=\frac{1}{2} x+5$
3.

$x=4$
$y=1$
$x+3 y=15$
4. $y=-\frac{1}{3} x+5$

