\qquad
\qquad Hour: \qquad
Last time we learned how to solve equations by taking square roots. These equations were all in standard form, $\mathrm{y}=\mathrm{ax}+\mathrm{c}$, with $\mathrm{b}=0$. When an equation is in vertex form we can use a similar process to find the solutions.

Find the x -intercepts of each the equation, if possible.

Example 1: $y=(x-6)^{2}-49$
Example 2: $\quad f(x)=(x-2)^{2}+100$

Example 3: Find the zeros of the equation. (Round these answers to the nearest tenth)

Find the solutions of the equation, if possible.
Example 4: $\quad y=4(x+9)^{2}-256$
Example 5: $f(x)=-(x+15)^{2}+625$

Homework: Find the x-intercepts for each of the following equations, if possible. Show all work for full credit.

1. $y=(x-3)^{2}-121$
2. $y=(x+5)^{2}-81$
3. $y=(x+10)^{2}-144$
4. $y=(x+4)^{2}+64$
5. $y=3(x+2)^{2}-75$
6. $y=6(x+4)^{2}-96$
7. $y=-(x-1)^{2}+225$
8. $y=-5(x+3)^{2}+245$
9. $y=2(x+5)^{2}-24$
10. $y=-(x+4)^{2}+29$
11. Find the vertex, equation for the axis of symmetry, and the intercepts. Use this information to graph the function.

$$
y=(x-5)^{2}-9
$$

Vertex: \qquad
AOS: \qquad
y-intercept: \qquad
x-intercepts:

