\qquad
\qquad Hour: \qquad (PH Alg2 5-3)

Vertex Form: $f(x)=a(x-h)^{2}+k \quad$ Standard Form: $f(x)=a x^{2}+b x+c$

Graph of a Quadratic Function in Vertex Form

The graph of $y=a(x-h)^{2}+k$ is the graph of $y=a x^{2}$ translated h units horizontally and k units vertically.

- h is "inside" the parenthesis and the graph moves right or left "opposite"
- k is "outside" and the graph moves up or down the "same"

- The vertex is (h, k), and the axis of symmetry is the line $x=h$.

Example 1: Using Vertex Form to Graph a Parabola

a. Graph $y=2(x+1)^{2}-4$

Step 1: Graph the vertex point (\qquad , \qquad)

Step 2: Find and sketch the axis of symmetry. \qquad
Step 3: Find and plot the y-intercept point (0 , \qquad)
Step 4: Reflect the y-intercept over the axis of symmetry to obtain another point.
Step 5: Sketch the curve.

b. Graph $y=-1 / 2(x-2)^{2}$

Step 1: Graph the vertex point (\qquad , \qquad)

Step 2: Find and sketch the axis of symmetry. \qquad
Step 3: Find and plot another point (\qquad , \qquad)

Step 4: Reflect this other point over the axis of symmetry to obtain new point.

Step 5: Sketch the curve.

Example 2: Writing the Equation of a Parabola

a. Write the equation of the parabola at the right.

b. Write the equation of the parabola at the right.

