Unit 5 - Quadratic Functions **Day 13 Quadratics in Vertex Form**

Name: Date: Hour:

(PH Alg2 5-3)

Vertex Form: $f(x) = a(x - h)^2 + k$

Graph of a Quadratic Function in Vertex Form

The graph of $y = a(x - h)^2 + k$ is the graph of $y = ax^2$ translated h units horizontally and *k* units vertically.

- h is "inside" the parenthesis and the graph moves right or left "opposite"
- k is "outside" and the graph moves up or down the "same" .
- The vertex is (h, k), and the axis of symmetry is the line x = h.

Example 1: Using Vertex Form to Graph a Parabola

a. Graph $y = 2(x + 1)^2 - 4$

- Step 1: Graph the vertex point (___ , ___)
- **Step 2:** Find and sketch the axis of symmetry.
- **Step 3:** Find and plot the y-intercept point (0, ____)
- Step 4: Reflect the y-intercept over the axis of symmetry to obtain another point.
- Step 5: Sketch the curve.

b. Graph $y = -\frac{1}{2}(x - 2)^2$

- Step 1: Graph the vertex point (____, ___)
- Step 2: Find and sketch the axis of symmetry. _____
- Step 3: Find and plot another point (_____, ____)
- Step 4: Reflect this other point over the axis of symmetry to obtain new point.
- Step 5: Sketch the curve.

					4						1
						[
						[
						[
						[
([
											1
•											

Standard Form: $f(x) = ax^2 + bx + c$

Example 2: Writing the Equation of a Parabola

a. Write the equation of the parabola at the right.

b. Write the equation of the parabola at the right.

