Unit 0 Back to Basics Review
Day 9 Solve Linear Inequalities
(PH 3-2 to 3-4)

Name: \qquad
Date: \qquad Hour: \qquad

Greater Than:

Greater Than OR Equal To:

Less Than:

Less Than OR Equal To:

Example 1: Graph each inequality on a number line.
a. $\mathrm{x}<2$

b. $x \geq-3$

c. $\mathrm{x} \leq 0$

d. $x>-5$

When solving linear inequalities, the solution is often a set of real numbers.

- Use OPEN circles for
- Use CLOSED circles for
or
or

Example 2: Solve the inequality. Graph your solution.
a. $\mathrm{x}+12<-20$
b. $\quad \mathrm{x}-3 / 2=5 / 4$

Investigation: Consider the inequality $4>1$.

- What happens to the inequality symbol when you multiply each side by a positive number?
- What happens to the inequality symbol when you multiply each side by zero?
- What happens to the inequality symbol when you multiply each side by a negative number?

If you multiply (or divide) both sides by a positive number the inequality symbol \qquad .

If you multiply (or divide) both sides by a negative number the inequality symbol \qquad .

Example 3: Solve each inequality. Graph and check your solution.
a. $\quad-5 z \geq 25$

b. $\quad \frac{x}{2}<-1$

c. $\quad-\frac{3}{5} x<9$

Example 4: Solve and graph the solution.

$$
5>7-2 h
$$

Example 5: Solve and check your solutions. Do not Graph.
a. $4 \mathrm{p}+2(\mathrm{p}+7) \leq 8$
b. $6 z-15<4 z+11$

BE CAREFUL:

If you get a "false" statement there are NO SOLUTIONS to the inequality. It is NEVER true.
Example of a "false" statement:

If you get a "true" statement there are INFININITE SOLUTIONS. It is ALWAYS true.
Example of a "true" statement:
Example 6: Solve. Do not Graph.
a. $2 x+15>2(x+5)$
b. $-4 \mathrm{x}+1 \leq-4 \mathrm{x}-3$

Homework: Unit 0 Day 9 Worksheet

