\qquad
\qquad Hour Real Numbers and Their Properties

The Real Number System

Type	Definition	Examples
Natural	The set of numbers 1, 2, 3, 4, ... Also called the \qquad numbers.	1, 2, 3, 4, ...
Whole	Natural numbers (counting numbers) and	0, 1, 2, 3, 4, ..
Integers	Whole numbers and their	$\ldots,-2,-1,0,1,2, \ldots$
Rational	Any number that can be written as a \qquad When in decimal form the number pattern repeats or terminates.	$\begin{aligned} & 3 / 4,-41 / 2,7.95, \\ & \text { and } 0.123123 \ldots \end{aligned}$
Irrational	Numbers that \qquad be expressed as a ratio of two integers. Their decimal expansions are nonending and nonrepeating.	$\pi, \sqrt{2}, \sqrt[3]{19}$
Real	All __and	numbers.
A Quizlet link is available on Schoology to help you STUDY these definitions!		

Example 1: Name all sets of numbers to which each real number belongs. Circle the smallest set.
a. $-\frac{17}{31}$
b. 23
c. 0
d. 4.581
e. -12
h. $\sqrt{3}$

Example 2: Which set of number is most reasonable for the situation?
a. the number of M\&M candies in a bag
b. outdoor temperatures
c. an ingredient list for baking cookies
d. the area of a circle

Properties of Real Numbers

Let a, b, and c represent real numbers.

Property	of Addition	of Multiplication
Closure	$\mathrm{a}+\mathrm{b}$ is a real number	ab is a real number
Commutative	$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$	$\mathrm{ab}=\mathrm{ba}$
Associative	$(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$	$(\mathrm{ab}) \mathrm{c}=\mathrm{a}(\mathrm{bc})$
Identity	$\mathrm{a}+0=\mathrm{a}, 0+\mathrm{a}=\mathrm{a}$	$\mathrm{a} \cdot 1=\mathrm{a}, 1 \cdot \mathrm{a}=\mathrm{a}$
Inverse	$\mathrm{a}+(-\mathrm{a})=0$	$\mathrm{a} \cdot \frac{1}{\mathrm{a}}=1, \mathrm{a} \neq 0$

Other Properties	
Distributive	$\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$
Multiplication Property of Zero	$a \cdot 0=0$
Multiplication Property of $\mathbf{- 1}$	$-1 \cdot a=-a$

Example 3: Name the property of real numbers illustrated by each equation.
a. $6+-6=0$
b. $(-4 \cdot 1)-2=-4-2$
c. $t+0=t$
d. $(d \cdot 4) \cdot 3=d \cdot(4 \cdot 3)$
e. $\frac{2}{3} \cdot \frac{3}{2}=1$
f. $\sqrt{7} \cdot 2=2 \cdot \sqrt{7}$
g. $m \cdot 0=0$
h. $\sqrt{2}(\pi+7)=\pi \sqrt{2}+7 \sqrt{2}$
i. $1 m=m$
j. $(-3+4)+5=-3+(4+5)$
k. $3(8 \cdot 0)=(3 \cdot 8) 0$
I. $(3+0)-5=3-5$
m. $9+7=7+9$
n. $-q=-1 q$

Example 4: Use the distributive property to find each product.
a. $2(x+4)$
b. $-3(4 y-7)$
c. $-(x+4)$
d. $2 x(3 x-1)$

